skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Namkoong, Hongseok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While modern large-scale data sets often consist of heterogeneous subpopulations—for example, multiple demographic groups or multiple text corpora—the standard practice of minimizing average loss fails to guarantee uniformly low losses across all subpopulations. We propose a convex procedure that controls the worst case performance over all subpopulations of a given size. Our procedure comes with finite-sample (nonparametric) convergence guarantees on the worst-off subpopulation. Empirically, we observe on lexical similarity, wine quality, and recidivism prediction tasks that our worst case procedure learns models that do well against unseen subpopulations. 
    more » « less
  2. We study statistical inference and distributionally robust solution methods for stochastic optimization problems, focusing on confidence intervals for optimal values and solutions that achieve exact coverage asymptotically. We develop a generalized empirical likelihood framework—based on distributional uncertainty sets constructed from nonparametric f-divergence balls—for Hadamard differentiable functionals, and in particular, stochastic optimization problems. As consequences of this theory, we provide a principled method for choosing the size of distributional uncertainty regions to provide one- and two-sided confidence intervals that achieve exact coverage. We also give an asymptotic expansion for our distributionally robust formulation, showing how robustification regularizes problems by their variance. Finally, we show that optimizers of the distributionally robust formulations we study enjoy (essentially) the same consistency properties as those in classical sample average approximations. Our general approach applies to quickly mixing stationary sequences, including geometrically ergodic Harris recurrent Markov chains. 
    more » « less